Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorZiegler, Martin
dc.date.accessioned2025-04-30T06:03:33Z
dc.date.available2025-04-30T06:03:33Z
dc.date.issued2017
dc.identifier.issn1877-7058en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/157439
dc.description.abstractGeosynthetics are widely used for separation, protection, drainage, filtration and sealing. In addition, high-strength geogrids have been more and more successfully used in recent times for the construction of steep slopes and geogrid reinforced bridge abutments, the crossing of areas with soft soil by using geosynthetic encased sand columns and the bridging of areas susceptible to sinkholes. Particularly for the last case geosynthetics with additional features have been developed allowing a permanent monitoring of the deformations. The development of such intelligent geosynthetics with integrated chips and sensors for measuring strains, temperature or environmental conditions are by no means at its end. Geosynthetics of the future will be equipped with such additional functions enabling a permanent and non-destructive monitoring of structures built with geosynthetics. Anyhow, geogrid reinforcement constructions show significant advantages in terms of economic and ecological aspects against classical concrete structures. It is also well known from large-scale experiments and field tests that geosynthetic-reinforced constructions have a much higher bearing capacity than calculated and that the deformations are much lower than expected. Therefore, it is quite evident that the compound behavior of geosynthetic and soil is not yet completely understood. Recent research on this topic using large-scale triaxial- and biaxial- tests combined with a modern method of visualization of the movement of the soil particles tries to fill this gap.en_US
dc.format.extent10 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/157277en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S1877705817305210en_US
dc.subjectgeogrid reinforcementen_US
dc.subjectinterlocking effecten_US
dc.subjecttriaxial and biaxial testsen_US
dc.subjectparticle image velocemetryen_US
dc.titleApplication of geogrid reinforced constructions: history, recent and future developmentsen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.licenseCC BY NC NDen_US
dcterms.references8en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionRWTH Aachen Universityen_US
dcterms.sourcetitleProcedia Engineeringen_US
dc.description.volumevol. 172en_US
dc.publisher.nameElsevieren_US
dc.publisher.countryUnited Kingdomen_US
dc.publisher.cityOxforden_US
dc.description.fundingorganizationHuesker Synthetic GmbH
dc.description.fundingorganizationNaue GmbH & Co. KG
dc.identifier.doihttps://doi.org/10.1016/j.proeng.2017.02.015en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence