dc.rights.license | Kūrybinių bendrijų licencija / Creative Commons licence | en_US |
dc.contributor.author | Bačinskas, Darius | |
dc.contributor.author | Rimkus, Arvydas | |
dc.contributor.author | Rumšys, Deividas | |
dc.contributor.author | Meškėnas, Adas | |
dc.contributor.author | Bielinis, Simas | |
dc.contributor.author | Sokolov, Aleksandr | |
dc.contributor.author | Merkevičius, Tomas | |
dc.date.accessioned | 2025-04-30T07:11:57Z | |
dc.date.available | 2025-04-30T07:11:57Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1877-7058 | en_US |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/157442 | |
dc.description.abstract | Experimental investigation of structural behavior of glass fiber reinforced polymer (GFRP) space truss bridge model subjected to static loading is discussed in this paper. Bridge prototype was assembled using GFRP profiles produced by Fiber-line Composites Ltd, steel bolts and GFRP brackets. In order to load the structure, wooden bridge deck was installed. Total load of 13.3 kN was applied in four stages while measuring the bridge node displacement. Flexural behavior of the truss structure was monitored at every loading stage. In order to perform the comparison analysis of truss structural behavior, numerical model was created employing finite element software Solid-works. Comparative analysis has shown good agreement between experimental and numerical results (the margin of error varied from 0,3 up to 10,5%). The obtained results show, that designed and tested bridge model has a sufficient reserve of structural stiffness. Performed investigation reveals that GFRP profiles are suitable for real pedestrian bridge superstructures. | en_US |
dc.description.sponsorship | Fiberline Composites A/S | |
dc.description.sponsorship | FibroLT Ltd | |
dc.description.sponsorship | T. Dulskas | |
dc.format.extent | 7 p. | en_US |
dc.format.medium | Tekstas / Text | en_US |
dc.language.iso | en | en_US |
dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/157277 | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source.uri | https://www.sciencedirect.com/science/article/pii/S1877705817305246 | en_US |
dc.subject | GFRP composite | en_US |
dc.subject | footbridge structures | en_US |
dc.subject | numerical modeling | en_US |
dc.subject | static loading | en_US |
dc.subject | deflection | en_US |
dc.title | Structural analysis of GFRP truss bridge model | en_US |
dc.type | Konferencijos publikacija / Conference paper | en_US |
dcterms.accessRights | Laisvai prieinamas / Openly available | en_US |
dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
dcterms.license | CC BY NC ND | en_US |
dcterms.references | 12 | en_US |
dc.description.version | Taip / Yes | en_US |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
dc.contributor.institution | FibroLT Ltd. | en_US |
dc.contributor.faculty | Statybos fakultetas / Faculty of Civil Engineering | en_US |
dc.contributor.laboratory | Inovatyviųjų statybinių konstrukcijų laboratorija / Laboratory of Innovative Building Structures | en_US |
dcterms.sourcetitle | Procedia Engineering | en_US |
dc.description.volume | vol. 172 | en_US |
dc.publisher.name | Elsevier | en_US |
dc.publisher.country | United Kingdom | en_US |
dc.publisher.city | Oxford | en_US |
dc.description.fundingorganization | Research Council of Lithuania | en_US |
dc.description.grantnumber | MIP-093/2015 | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.proeng.2017.02.018 | en_US |