Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorBačinskas, Darius
dc.contributor.authorRimkus, Arvydas
dc.contributor.authorRumšys, Deividas
dc.contributor.authorMeškėnas, Adas
dc.contributor.authorBielinis, Simas
dc.contributor.authorSokolov, Aleksandr
dc.contributor.authorMerkevičius, Tomas
dc.date.accessioned2025-04-30T07:11:57Z
dc.date.available2025-04-30T07:11:57Z
dc.date.issued2017
dc.identifier.issn1877-7058en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/157442
dc.description.abstractExperimental investigation of structural behavior of glass fiber reinforced polymer (GFRP) space truss bridge model subjected to static loading is discussed in this paper. Bridge prototype was assembled using GFRP profiles produced by Fiber-line Composites Ltd, steel bolts and GFRP brackets. In order to load the structure, wooden bridge deck was installed. Total load of 13.3 kN was applied in four stages while measuring the bridge node displacement. Flexural behavior of the truss structure was monitored at every loading stage. In order to perform the comparison analysis of truss structural behavior, numerical model was created employing finite element software Solid-works. Comparative analysis has shown good agreement between experimental and numerical results (the margin of error varied from 0,3 up to 10,5%). The obtained results show, that designed and tested bridge model has a sufficient reserve of structural stiffness. Performed investigation reveals that GFRP profiles are suitable for real pedestrian bridge superstructures.en_US
dc.description.sponsorshipFiberline Composites A/S
dc.description.sponsorshipFibroLT Ltd
dc.description.sponsorshipT. Dulskas
dc.format.extent7 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/157277en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S1877705817305246en_US
dc.subjectGFRP compositeen_US
dc.subjectfootbridge structuresen_US
dc.subjectnumerical modelingen_US
dc.subjectstatic loadingen_US
dc.subjectdeflectionen_US
dc.titleStructural analysis of GFRP truss bridge modelen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.licenseCC BY NC NDen_US
dcterms.references12en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.institutionFibroLT Ltd.en_US
dc.contributor.facultyStatybos fakultetas / Faculty of Civil Engineeringen_US
dc.contributor.laboratoryInovatyviųjų statybinių konstrukcijų laboratorija / Laboratory of Innovative Building Structuresen_US
dcterms.sourcetitleProcedia Engineeringen_US
dc.description.volumevol. 172en_US
dc.publisher.nameElsevieren_US
dc.publisher.countryUnited Kingdomen_US
dc.publisher.cityOxforden_US
dc.description.fundingorganizationResearch Council of Lithuaniaen_US
dc.description.grantnumberMIP-093/2015en_US
dc.identifier.doihttps://doi.org/10.1016/j.proeng.2017.02.018en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence