dc.rights.license | Kūrybinių bendrijų licencija / Creative Commons licence | en_US |
dc.contributor.author | Freimanis, Andris | |
dc.contributor.author | Paeglitis, Ainars | |
dc.date.accessioned | 2025-05-02T07:45:29Z | |
dc.date.available | 2025-05-02T07:45:29Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1877-7058 | en_US |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/157471 | |
dc.description.abstract | Peridynamics is a non-local formulation of continuum mechanics that does not rely on spatial derivatives, therefore peridynamics
is well suited for crack and failure modeling. Body is discretized in a finite number of particles and each particle connects to other
particles within a range called a material’s horizon. In this study authors performed fifty glass-fiber coupon tensile and compression
simulations with different horizon size and particle spacing combinations to see how they influence maximum displacement. Values
from simulations are compared with values calculated using Hooke’s law. The results show that the horizon size of three particle
spacings gives the best results, which, support’s the general view on the issue. However, simulations with horizon sizes times
larger than particle spacing show similar accuracy. | en_US |
dc.format.extent | 8 p. | en_US |
dc.format.medium | Tekstas / Text | en_US |
dc.language.iso | en | en_US |
dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/157277 | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source.uri | https://www.sciencedirect.com/science/article/pii/S1877705817306227 | en_US |
dc.subject | peridynamics | en_US |
dc.subject | mesh | en_US |
dc.subject | convergence | en_US |
dc.subject | sensitivity | en_US |
dc.subject | state-based | en_US |
dc.subject | state-based | en_US |
dc.title | Mesh sensitivity in peridynamic quasi-static simulations | en_US |
dc.type | Konferencijos publikacija / Conference paper | en_US |
dcterms.accessRights | Laisvai prieinamas / Openly available | en_US |
dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
dcterms.license | CC BY NC ND | en_US |
dcterms.references | 17 | en_US |
dc.description.version | Taip / Yes | en_US |
dc.contributor.institution | Riga Technical University | en_US |
dcterms.sourcetitle | Procedia Engineering | en_US |
dc.description.volume | vol. 172 | en_US |
dc.publisher.name | Elsevier | en_US |
dc.publisher.country | United Kingdom | en_US |
dc.publisher.city | Oxford | en_US |
dc.description.fundingorganization | Latvia State Research Programme | en_US |
dc.description.grantname | Innovative materials and smart technologies for environmental safety, IMATEH | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.proeng.2017.02.116 | en_US |