Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorKumar, Selvaraj Vasantha
dc.date.accessioned2025-08-25T11:10:30Z
dc.date.available2025-08-25T11:10:30Z
dc.date.issued2017
dc.identifier.issn1877-7058en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/158782
dc.description.abstractTraffic flow prediction is an important research problem in many of the Intelligent Transportation Systems (ITS) applications. The use of Autoregressive Integrated Moving average (ARIMA) or seasonal ARIMA (SARIMA) for traffic flow prediction requires huge flow data for model development and hence it may not be possible to use ARIMA in cases where sufficient data are unavailable. To overcome this problem, a prediction scheme based on Kalman filtering technique (KFT) was proposed and evaluated which requires only limited input data. Only previous two days flow observations has been used in the prediction scheme developed using KFT for predicting the next day flow values with a desired accuracy. Traffic flow prediction using both historic (previous two days flow data) and real time data on the day of interest was also attempted. Promising results were obtained with mean absolute percentage error (MAPE) of 10 between observed and predicted flows and this indicates the suitability of the proposed prediction scheme for traffic flow forecasting in ITS applications.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/158656en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S1877705817319471en_US
dc.subjectintelligent transportation systemsen_US
dc.subjecttraffic flow predictionen_US
dc.subjectKalman filteringen_US
dc.subjectlimited dataen_US
dc.titleTraffic flow prediction using Kalman filtering techniqueen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2017-05-05
dcterms.licenseCC BY NC NDen_US
dcterms.references9en_US
dc.description.versionTaip / Yesen_US
dc.type.pubtypeK1a - Monografija / Monographen_US
dc.contributor.institutionVIT Universityen_US
dcterms.sourcetitleProcedia Engineeringen_US
dc.description.volumevol. 187en_US
dc.publisher.nameElsevieren_US
dc.publisher.countryUnited Kingdomen_US
dc.publisher.cityOxforden_US
dc.identifier.doihttps://doi.org/10.1016/j.proeng.2017.04.417en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence