Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorJacyna-Gołda, Ilona
dc.contributor.authorIzdebski, Mariusz
dc.date.accessioned2025-08-25T12:14:33Z
dc.date.available2025-08-25T12:14:33Z
dc.date.issued2017
dc.identifier.issn1877-7058en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/158789
dc.description.abstractThe warehouse facilities location is a complex multi-objective decision problem. In order to determine this location one can use a different mathematical models that describe the location according to the accepted constraints and criterion functions. This paper presents the warehouses location in the logistic network. The logistic network consists of suppliers, potentially warehouses with the known location and recipients. The variety of constraints that must be considered e.g. the production capacity of suppliers, buyers, the storage capacity makes it difficult to decide on the final location of objects of the logistic network. The warehouse location problem in the logistics network is multi-criteria optimization problem that depends on quantitative and qualitative criteria. In general, the optimization criteria takes the form: minimal storage costs, transition costs of the cargo through warehouse facilities, the cost of cargo transport to the warehouse facility, etc. The complexity of the warehouse location problem dictated by the diversity of constraints and decision variables (e.g. the type of binary decision variables and the real type of variables), the search for the location of many warehouse facilities at the same time, multi-criteria aspects of the problem imposes the need for the application of an appropriate optimization algorithm adequately to the presented location problem. The genetic algorithm is a practical optimization tool solving many difficult decision problems. It should be underlined that in complicated problems this tool does not guarantee the optimal solution, but sub-optimal. Despite that, the quality of the solution is accepted by decision-makers.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/158656en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S1877705817319549en_US
dc.subjectmulti-criteria warehouses location problemen_US
dc.subjectgenetic algorithmen_US
dc.subjecteffectiveness of location selectionen_US
dc.titleThe multi-criteria decision support in choosing the efficient location of warehouses in the logistic networken_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2017-05-05
dcterms.licenseCC BY NC NDen_US
dcterms.references19en_US
dc.description.versionTaip / Yesen_US
dc.type.pubtypeK1a - Monografija / Monographen_US
dc.contributor.institutionWarsaw University of Technologyen_US
dcterms.sourcetitleProcedia Engineeringen_US
dc.description.volumevol. 187en_US
dc.publisher.nameElsevieren_US
dc.publisher.countryUnited Kingdomen_US
dc.publisher.cityOxforden_US
dc.description.fundingorganizationNCBRen_US
dc.description.grantnameSystem for modeling and 3D visualization of storage facilitiesen_US
dc.description.grantnameSystem for modeling and 3D visualization of storage facilities (SIMMAG3D)en_US
dc.identifier.doihttps://doi.org/10.1016/j.proeng.2017.04.424en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence