| dc.rights.license | Kūrybinių bendrijų licencija / Creative Commons licence | en_US |
| dc.contributor.author | Skačkauskienė, Ilona | |
| dc.contributor.author | Bytautė, Sigita | |
| dc.contributor.author | Leonavičiūtė, Virginija | |
| dc.date.accessioned | 2025-10-13T11:42:28Z | |
| dc.date.available | 2025-10-13T11:42:28Z | |
| dc.date.issued | 2025 | |
| dc.date.submitted | 2025-02-20 | |
| dc.identifier.issn | 2029-4441 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159256 | |
| dc.description.abstract | With increasing competition in the rental market, landlords and real estate professionals must make informed
commercial real estate (CRE) tenant selection decisions. Traditional evaluation methods, such as credit checks
and rental history analysis, often lack comprehensiveness. This study examines the applicability of decision support
systems (DSS) for tenant assessment through a systematic literature review (2020–2024). By integrating data analytics,
machine learning, and advanced decision-making tools, DSS can offer a structured, data-driven approach to improving
assessment accuracy. The findings reveal key trends, research gaps, and DSS’s evolving role in increasing decision-making
objectivity. Additionally, the study explores managerial implications, including ethical concerns, data integration
challenges, and the impact of emerging technologies. | en_US |
| dc.format.extent | 11 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159126 | en_US |
| dc.rights | Attribution 4.0 International | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | potential clients | en_US |
| dc.subject | commercial real estate | en_US |
| dc.subject | tenant assessment | en_US |
| dc.subject | decision support | en_US |
| dc.subject | PRISMA | en_US |
| dc.subject | systematic literature review | en_US |
| dc.title | Assessment of potential tenants and decision support systems: from systematic literature review to future research guidelines | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accessRights | Laisvai prieinamas / Openly available | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.alternative | V. New perspectives on management and resilience of business organizations | en_US |
| dcterms.dateAccepted | 2025-03-18 | |
| dcterms.issued | 2025-10-13 | |
| dcterms.license | CC BY | en_US |
| dcterms.references | 41 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
| dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
| dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | en_US |
| dc.contributor.department | Vadybos katedra / Department of Management | en_US |
| dcterms.sourcetitle | 15th International Scientific Conference “Business and Management 2025” | en_US |
| dc.identifier.eisbn | 9786094764233 | en_US |
| dc.identifier.eissn | 2029-929X | en_US |
| dc.publisher.name | Vilnius Gediminas Technical University | en_US |
| dc.publisher.name | Vilniaus Gedimino technikos universitetas | en_US |
| dc.publisher.country | Lithuania | en_US |
| dc.publisher.country | Lietuva | en_US |
| dc.publisher.city | Vilnius | en_US |
| dc.identifier.doi | https://doi.org/10.3846/bm.2025.1519 | en_US |