Rodyti trumpą aprašą

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorUčkuronytė, Olivija
dc.contributor.authorMaknickienė, Nijolė
dc.date.accessioned2025-10-15T13:27:47Z
dc.date.available2025-10-15T13:27:47Z
dc.date.issued2025
dc.date.submitted2025-03-07
dc.identifier.issn2029-4441en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159270
dc.description.abstractThe aim of this study is to examine the application of big data analytics in financial fraud detection, considering advancements in modern technology and the increasing complexity of financial crime schemes. The research is based on an extensive review of the scientific literature, data synthesis, and the application of empirical methods, including clustering analysis using the UMAP algorithm, graphical visualization techniques, and descriptive statistics, to systematically assess fraud detection mechanisms and their effectiveness. The findings reveal that advanced artificial intelligence techniques, such as deep neural networks and random forest models, enable the efficient detection of financial fraud in real time. Big data analytics not only facilitates the processing of vast financial transaction datasets but also allows for the integration of diverse data sources and the development of adaptive predictive models capable of adjusting to evolving fraud patterns. However, the study also highlights critical challenges, including data quality assurance, privacy protection, and the need for significant computational resources. The practical significance of this research lies in the development of more effective financial fraud prevention strategies, enhancing the resilience and trustworthiness of the financial sector. These insights are particularly valuable for banks, insurance companies, and other financial institutions seeking to mitigate fraud risks and safeguard clients from potential losses. The originality of the study is reflected in its systematic evaluation of the application of big data analytics in financial fraud prevention, grounded in the integration of theoretical and practical knowledge.en_US
dc.format.extent9 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159126en_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectbig data analyticsen_US
dc.subjectfinancial frauden_US
dc.subjectmachine learningen_US
dc.subjectfraud preventionen_US
dc.subjectartificial intelligenceen_US
dc.subjectpredictive modelsen_US
dc.titleInvestigation of financial fraud detection by using big data analyticsen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.alternativeIV. Finance and investment: new challenges and opportunitiesen_US
dcterms.dateAccepted2025-04-16
dcterms.issued2025-10-13
dcterms.licenseCC BYen_US
dcterms.references27en_US
dc.description.versionTaip / Yesen_US
dc.type.pubtypeK1a - Monografija / Monographen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Managementen_US
dc.contributor.departmentFinansų inžinerijos katedra / Department of Financial Engineeringen_US
dcterms.sourcetitle15th International Scientific Conference “Business and Management 2025”en_US
dc.identifier.eisbn9786094764233en_US
dc.identifier.eissn2029-929Xen_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/bm.2025.1461en_US


Šio įrašo failai

Thumbnail
Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą

Kūrybinių bendrijų licencija / Creative Commons licence
Išskyrus atvejus, kai nurodyta kitaip, šio įrašo licencija apibrėžiama taipKūrybinių bendrijų licencija / Creative Commons licence