Rodyti trumpą aprašą

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorČyras, Giedrius
dc.contributor.authorJanušauskienė, Vita Marytė
dc.date.accessioned2025-10-16T06:30:43Z
dc.date.available2025-10-16T06:30:43Z
dc.date.issued2025
dc.date.submitted2025-01-11
dc.identifier.issn2029-4441en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159276
dc.description.abstractThis study analyzed the strategic use of artificial intelligence (AI) in supply chain management to optimize efficiency, accuracy, and decision-making. A comprehensive review of academic literature and relevant business case studies was conducted to assess the impact of AI on logistics process optimization, decision-making, and operational efficiency within the supply chain. Analytical, inductive, and deductive methods were applied to critically break down and examine the collected information. The results revealed that the implementation of AI brings significant benefits. For example, Lithuanian trade company Maxima has successfully reduced inventory levels by 20% and improved sales forecast accuracy by 15% through AI-driven demand prediction systems. Similarly, another company Eugesta has experienced a 30% reduction in inventory levels and a 20% improvement in sales forecast accuracy due to AI algorithms. Building on this research, the authors propose a model that integrates AI-driven supply chain optimization strategies, outlining key factors for enhancing business efficiency, predictive accuracy, and decision-making. The proposed model aims to serve as a structured framework for companies looking to leverage AI for sustainable competitive advantage in supply chain management.en_US
dc.format.extent9 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159126en_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectlogisticsen_US
dc.subjectautomationen_US
dc.subjectstrategyen_US
dc.subjectintelligence artificialen_US
dc.subjectefficiencyen_US
dc.titleStrategic use of artificial intelligence in enterprise supply chain managementen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.alternativeIII. Business technologies and sustainable entrepreneurshipen_US
dcterms.dateAccepted2025-03-15
dcterms.issued2025-10-14
dcterms.licenseCC BYen_US
dcterms.references44en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Managementen_US
dcterms.sourcetitle15th International Scientific Conference “Business and Management 2025”en_US
dc.identifier.eisbn9786094764233en_US
dc.identifier.eissn2029-929Xen_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/bm.2025.1453en_US


Šio įrašo failai

Thumbnail
Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą

Kūrybinių bendrijų licencija / Creative Commons licence
Išskyrus atvejus, kai nurodyta kitaip, šio įrašo licencija apibrėžiama taipKūrybinių bendrijų licencija / Creative Commons licence