Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorTamulevičius, Gintautas
dc.contributor.authorKarbauskaitė, Rasa
dc.contributor.authorDzemyda, Gintautas
dc.date.accessioned2025-12-03T11:53:50Z
dc.date.available2025-12-03T11:53:50Z
dc.date.issued2017
dc.identifier.isbn9781538639993en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159476
dc.description.abstractDespite numerous studies during the last decade speech emotion recognition is still the task of limited success. Great efforts were made for extending emotional speech feature sets and selecting the most effective ones, proposing multi-stage and multiple classifier based classification schemes, and developing multi-modal speech emotion recognition technique. Nevertheless, the reported emotion recognition rates vary from 70 % up to 90 % depending on the analyzed language, the number of recognized emotions, the speaker mode, and other important factors. Considering the nonlinear and fluctuating nature of the spoken language, we present a feature set, based on a fractal dimension (FD) for emotion classification. Katz, Castiglioni, Higuchi, and Hurst exponent-based FD features were employed in 2-7 emotion classification tasks. The experimental results show a clear superiority of FD based feature sets against acoustic ones. The feature selection enabled us to reduce the initial feature set down to 2-7 order sets and to improve thereby the accuracy of speech emotion classification by 11.4 %. The obtained average classification accuracy for all tasks was 96.6 %.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159383en_US
dc.source.urihttps://ieeexplore.ieee.org/document/7950316en_US
dc.subjectfractalsen_US
dc.subjectfeature selectionen_US
dc.subjectemotion recognitionen_US
dc.titleSelection of fractal dimension features for speech emotion classificationen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2017-06-19
dcterms.references25en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.institutionVilnius Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dcterms.sourcetitle2017 Open Conference of Electrical, Electronic and Information Sciences (eStream), April 27, 2017, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781538639986en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream.2017.7950316en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą