| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Paulauskas, Nerijus | |
| dc.contributor.author | Auskalnis, Juozas | |
| dc.date.accessioned | 2025-12-04T13:57:56Z | |
| dc.date.available | 2025-12-04T13:57:56Z | |
| dc.date.issued | 2017 | |
| dc.identifier.isbn | 9781538639993 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159485 | |
| dc.description.abstract | Data pre-processing for machine learning methods is key step for knowledge discovery process. Depending on nature of the data, pre-processing might take the majority time of data analysis. Correctly prepared data for processing guarantees precise and reliable results of data analysis. This paper analyses initial data pre-processing influence to attack detection accuracy by using Decision Trees, Naïve Bayes and Rule-Based classifiers with NSL-KDD dataset. In addition, the results of detected attacks accuracy dependency by selecting different attacks grouping options and using ensembles of various classifiers are presented. | en_US |
| dc.format.extent | 5 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159383 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/7950325 | en_US |
| dc.subject | pre-processing | en_US |
| dc.subject | data mining | en_US |
| dc.subject | classifiers | en_US |
| dc.subject | intrusion detection | en_US |
| dc.title | Analysis of data pre-processing influence on intrusion detection using NSL-KDD dataset | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2017-06-19 | |
| dcterms.references | 13 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
| dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
| dcterms.sourcetitle | 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream), April 27, 2017, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9781538639986 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream.2017.7950325 | en_US |