| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Sledevic, Tomyslav | |
| dc.date.accessioned | 2025-12-10T08:16:58Z | |
| dc.date.available | 2025-12-10T08:16:58Z | |
| dc.date.issued | 2019 | |
| dc.identifier.isbn | 9781728125008 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159508 | |
| dc.description.abstract | The article presents integration process of convolution and batch normalization layer for further implementation on FPGA. The convolution kernel is binarized and merged with batch normalization into a core and implemented on single DSP. The concept is proven on custom binarized convolutional neural network (CNN) that is trained in Matlab to solve object localization task. 16 b precision gives 1.3 % error on the output of joined convolution and batch normalization core. The localization accuracy decreases in average by 7 % from 74 % to 67 %, and it is still tolerable in embedded systems applications. | en_US |
| dc.format.extent | 4 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159393 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/8732160 | en_US |
| dc.subject | Convolutional Neural Network | en_US |
| dc.subject | Kernel Binarization | en_US |
| dc.subject | Batch Normalization | en_US |
| dc.subject | Gradient Descent Training | en_US |
| dc.subject | FPGA | en_US |
| dc.subject | Object localization | en_US |
| dc.title | Adaptation of Convolution and Batch Normalization Layer for CNN Implementation on FPGA | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2019-06-06 | |
| dcterms.references | 19 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
| dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
| dc.contributor.department | Elektroninių sistemų katedra / Department of Electronic Systems | en_US |
| dcterms.sourcetitle | 2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2019, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9781728124995 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream.2019.8732160 | en_US |