Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorChmieliauskas, Darius
dc.contributor.authorGuršnys, Darius
dc.date.accessioned2025-12-11T12:57:04Z
dc.date.available2025-12-11T12:57:04Z
dc.date.issued2019
dc.identifier.isbn9781728125008en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159522
dc.description.abstractRecent popularity grow of predictive analysis is growing in many fields. Importance to forecast mobile traffic for each LTE cell can bring mobile network planning advantages for the operator. It can help operators to spend minimum investing for new sites and cells but be able to guarantee excellent service experience for mobile broadband users. In this paper study of mobile traffic forecasting feasibility using fbProphet algorithm developed by Facebook is presented. Target is to have short term forecasting from which the operator can proactively consider network expansion if the load is too high to satisfy user throughput demands. Five months of daily traffic data used to train model and one month used for forecasting and model testing. Also, 30 days of hourly data were used for busy hour traffic forecasting. In the last part relation between data traffic carried in the LTE cell to cell load explained.en_US
dc.format.extent5 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159393en_US
dc.source.urihttps://ieeexplore.ieee.org/document/8732145en_US
dc.subjectLTE network loaden_US
dc.subjecttime series forecastingen_US
dc.subjectmobile data trafficen_US
dc.subjectLTE cell capacityen_US
dc.titleLTE Cell Traffic Grow and Congestion Forecastingen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2019-06-06
dcterms.references9en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dcterms.sourcetitle2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2019, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781728124995en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream.2019.8732145en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record