Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorTamulionis, Mantas
dc.contributor.authorSerackis, Artūras
dc.date.accessioned2025-12-12T07:51:17Z
dc.date.available2025-12-12T07:51:17Z
dc.date.issued2019
dc.identifier.isbn9781728125008en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159528
dc.description.abstractAcoustic Virtual Reality (AVR) is a popular field of today's research, and the technologies it explores allow users to experience the virtual reality even more interactively, creating a sense of being truly involved into a virtual acoustic field. Auralization is one of the most interesting and useful AVR techniques. This procedure makes it possible to simulate how sound waves will behave in a particular environment, including how the listener will perceive it. This is achieved by taking into account Head-related transfer function (HRTF), which is essential for creating the main auralization product - Binaural Room Impulse Response (BRIR). It is common to use pre-recorded HRTF databases, but the required HRTF value can also be modeled using Artificial Neural networks (ANN). This article presents an investigation on ANN application for HRTF interpolation from discrete measured functions. Two types of neural networks are investigated: a Multi-Layer Perceptron and a Cascade Feed-Forward Network. Experimental investigation has shown that additional feed of inputs to the hidden layer in cascade network does not improve the interpolation performance. The best results were received using Multi-Layer Perceptron having two hidden layers with 32 and 16 neurons respectively.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159393en_US
dc.source.urihttps://ieeexplore.ieee.org/document/8732158en_US
dc.subjectartificial neural networksen_US
dc.subjectmulti-layer perceptronen_US
dc.subjectcascade feed-forwarden_US
dc.subjectauralizationen_US
dc.subjecthead-related transfer functionen_US
dc.titleComparison of Multi-Layer Perceptron and Cascade Feed-Forward Neural Network for Head-Related Transfer Function Interpolationen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2019-06-06
dcterms.references11en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2019, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781728124995en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream.2019.8732158en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record