Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorJonaitytė, Ieva
dc.contributor.authorPetkevičius, Linas
dc.date.accessioned2025-12-16T09:46:08Z
dc.date.available2025-12-16T09:46:08Z
dc.date.issued2021
dc.identifier.isbn9781665449298en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159560
dc.description.abstractIn this paper, we investigate the methods for extraction of significant information from medical breast cancer images for survival analysis. In breast cancer diagnostics as well as in the analysis of other medical images it is still common to employ manual assessment by medical staff, which needs a lot of prior professional knowledge. Unfortunately, such feature engineering is difficult to manage, reproduce and it also depends on each specific task and expert experience. In this study, we analyze how high-level features can be used for survival models. We create unsupervised learning models for information compression to bottlenecks via convolutional neural networks (CNN) and autoencoders (AE) to obtain the informative covariates. Then we use these image-related covariates in Cox proportional hazards regression. We demonstrate that unsupervised methods allow extracting meaningful covariates that are significant for survival analysis without using explicit feature engineering or image labeling. We run the experiments on TCGA (The Cancer Genome Atlass) breast cancer dataset.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159397en_US
dc.source.urihttps://ieeexplore.ieee.org/document/9431461en_US
dc.subjectMedical image analysisen_US
dc.subjecthistopathology imagesen_US
dc.subjectconvolutional neural networksen_US
dc.subjectsurvival analysisen_US
dc.subjectCox proportional hazards regressionen_US
dc.titleAnalysis of Information Compression of Medical Images for Survival Modelsen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2021-05-20
dcterms.references17en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilnius Universityen_US
dcterms.sourcetitle2021 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 22, 2021, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781665449281en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream53087.2021.9431461en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą