Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorChmieliauskas, Darius
dc.contributor.authorPaulikas, Šarūnas
dc.date.accessioned2025-12-18T12:46:00Z
dc.date.available2025-12-18T12:46:00Z
dc.date.issued2022
dc.identifier.isbn9781665450492en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159592
dc.description.abstractFor mobile network operators, it is important to know the service used by their clients for multiple reasons such as Quality of Service guarantee, throttling, prioritization of traffic, or differentiated pricing. The first step to achieve this is to recognize what application is used by a customer on this smart-device connected to mobile network. Classical, port-based, or deep packet inspection methods face difficulties due to widely used encryption. In this study, we investigate the feasibility of application recognition only from the bit-stream shape on mobile communication channel. For this purpose, a convolutional neural network for time-series classification was used on the dataset collected by the authors. Training of the convolutional neural network was performed on download and upload bit-streams using a sample duration of 60, 300 and 600 s.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159399en_US
dc.source.urihttps://ieeexplore.ieee.org/document/9781681en_US
dc.subjectMobile network trafficen_US
dc.subjectapp recognitionen_US
dc.subjecttime series classificationen_US
dc.titleApplication Recognition Based on Bit-Stream Shape in Mobile Networksen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2022-05-30
dcterms.references15en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dcterms.sourcetitle2022 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 21, 2022, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781665450485en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream56157.2022.9781681en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record