| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Mordyk, Oleksandr | |
| dc.date.accessioned | 2025-12-19T07:26:43Z | |
| dc.date.available | 2025-12-19T07:26:43Z | |
| dc.date.issued | 2022 | |
| dc.identifier.isbn | 9781665450492 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159597 | |
| dc.description.abstract | This article considers an approach to the recognition of explosive objects using a custom object detection model with Tensor-flow framework and OpenCV. The approach to creating a customer's own SSD model is considered in detail. Analyzed the benefits of using OpenCV to deploy an explosive object detection system. Briefly describe the application for testing and visualizing the work of the resulting model. The purpose of the research is using machine learning and computer vision as a new approach for resolving problem of detecting explosive objects. The object of research - the process of detecting explosive objects. Methods of research - methods of object detection, methods of machine learning, methods of simulation. | en_US |
| dc.format.extent | 4 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159399 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/9781771 | en_US |
| dc.subject | object | en_US |
| dc.subject | recognition | en_US |
| dc.subject | tensorflow | en_US |
| dc.subject | opencv | en_US |
| dc.subject | neural network | en_US |
| dc.subject | SSD | en_US |
| dc.title | Recognition of Explosive Objects Using Computer Vision and Machine Learning | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2022-05-30 | |
| dcterms.references | 11 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Kharkiv National University of Radio Electronics | en_US |
| dcterms.sourcetitle | 2022 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 21, 2022, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9781665450485 | en_US |
| dc.identifier.eissn | 2690-8506 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream56157.2022.9781771 | en_US |