Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorMordyk, Oleksandr
dc.date.accessioned2025-12-19T07:26:43Z
dc.date.available2025-12-19T07:26:43Z
dc.date.issued2022
dc.identifier.isbn9781665450492en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159597
dc.description.abstractThis article considers an approach to the recognition of explosive objects using a custom object detection model with Tensor-flow framework and OpenCV. The approach to creating a customer's own SSD model is considered in detail. Analyzed the benefits of using OpenCV to deploy an explosive object detection system. Briefly describe the application for testing and visualizing the work of the resulting model. The purpose of the research is using machine learning and computer vision as a new approach for resolving problem of detecting explosive objects. The object of research - the process of detecting explosive objects. Methods of research - methods of object detection, methods of machine learning, methods of simulation.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159399en_US
dc.source.urihttps://ieeexplore.ieee.org/document/9781771en_US
dc.subjectobjecten_US
dc.subjectrecognitionen_US
dc.subjecttensorflowen_US
dc.subjectopencven_US
dc.subjectneural networken_US
dc.subjectSSDen_US
dc.titleRecognition of Explosive Objects Using Computer Vision and Machine Learningen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2022-05-30
dcterms.references11en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2022 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 21, 2022, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781665450485en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream56157.2022.9781771en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record