Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorGedminas, Dovydas
dc.contributor.authorDumpis, Martynas
dc.contributor.authorSerackis, Artūras
dc.date.accessioned2025-12-19T08:17:46Z
dc.date.available2025-12-19T08:17:46Z
dc.date.issued2022
dc.identifier.isbn9781665450492en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159599
dc.description.abstractThe paper focuses on machine learning-based processing of inertial measurement unit signals for attitude estimation. Signals from the accelerometer, gyroscope, and magnetometer are used as input to the trained machine learning models, based on the recurrent neural network. Models provides four quaternion parameters predicted by a pre-trained neural network. The practical application of such a system showed that it is hard to get a universal model that is suitable for precise attitude estimation on different types of activity. In this paper, a two-step solution is proposed, constructed from an activity recognition stage and switchable models for the prediction of quaternion parameters followed by attitude estimation. An experimental investigation was performed on publicly available data taken from the Berlin Robust Orientation Estimation Assessment Dataset. The tests, carried out with labeled data, showed that the preparation of activity-related quaternion parameter prediction models can decrease the mean error in attitude estimation by 12.5 % together with a reduction in standard deviation by 3.2 %.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159399en_US
dc.source.urihttps://ieeexplore.ieee.org/document/9781733en_US
dc.subjectsensor fusionen_US
dc.subjectmotion sensor trackingen_US
dc.subjectrecurrent neural networken_US
dc.subjectKalman filteren_US
dc.titleFusion of Activity Recognition and Recurrent Neural Network for Attitude Estimation Improvementen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2022-05-30
dcterms.references17en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2022 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 21, 2022, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781665450485en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream56157.2022.9781733en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record