Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorTsai, Chieh
dc.contributor.authorLee, Pei Jun
dc.contributor.authorBui, Trong An
dc.contributor.authorPang, Tzu Yi
dc.contributor.authorLiobe, John
dc.contributor.authorBarzdėnas, Vaidotas
dc.date.accessioned2025-12-30T12:50:14Z
dc.date.available2025-12-30T12:50:14Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159629
dc.description.abstractEnhancing the detection of small objects in satellite imagery is of paramount importance for applications such as military surveillance and security monitoring. The challenge lies in addressing issues such as low resolution and image noise, which often lead to edge blurring and complicate object detection. This paper investigates super-resolution enhanced small object detection, particularly for ships in satellite images, employing a transformer-based architecture designed to emphasize and improve edge sharpness. The proposed model eliminates the window attention mechanism, substituting it with spatial and frequency self-attention to reinforce superior super-resolution detail learning, thereby enhancing the model's ability to capture finer details through spatial and frequency enhancements. Furthermore, the model optimizes performance by replacing depthwise-separable convolution, reducing computational complexity without compromising efficiency. Evaluated on the FGSCR dataset, with a specific focus on ship images, the proposed model achieves a notable 0.51 PSNR improvement and a 7% reduction in GFLOPs compared to the baseline SwinIR model. Finally, the proposed model was evaluated on YOLO object detection for practical application.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542578en_US
dc.subjectsuper-resolutionen_US
dc.subjectsmall object detectionen_US
dc.subjectsatellite imageryen_US
dc.subjecttransformer-based architectureen_US
dc.subjectedge sharpnessen_US
dc.subjectspatial and frequency self-attentionen_US
dc.subjectdepthwise separable convolutionen_US
dc.subjectship detectionen_US
dc.subjectPSNRen_US
dc.subjectGFLOPsen_US
dc.titleSpatial and Wavelet Attention-Enhanced Super-Resolution for Small Object Detection in Satellite Imageryen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references15en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionUniversity of Arizonaen_US
dc.contributor.institutionNational Taiwan University of Science and Technologyen_US
dc.contributor.institutionNational Taipei University of Technologyen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentKompiuterijos ir ryšių technologijų katedra / Department of Computer Science and Communications Technologiesen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542578en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record