Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorVilkelytė, Živilė
dc.contributor.authorWojciechowski, Jerzy
dc.contributor.authorBojarczak, Piotr
dc.contributor.authorFallah, Saad El
dc.contributor.authorKharbach, Jaouad
dc.contributor.authorOuazzani Jamil, Mohammed
dc.date.accessioned2025-12-31T07:10:25Z
dc.date.available2025-12-31T07:10:25Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159635
dc.description.abstractThe integration of artificial intelligence and machine learning technologies into critical infrastructures, such as smart grids, has raised significant concerns regarding cybersecurity. This paper explores the dual role of artificial intelligence and machine learning in both enhancing and challenging cybersecurity within smart grid systems. By analysing the current state of-the-art research and technology, the utilisation of artificial intelligence and machine learning to fortify cybersecurity defences while addressing potential vulnerabilities. The the emergence of cyber threats targeting Internet-of-Things-based smart grids is highlighted and solutions to mitigate these risks are proposed. Through a comprehensive review of literature, the efficacy of artificial intelligence driven cybersecurity measures in detecting and preventing cyberattacks are evaluated. Additionally, challenges associated with implementing these solutions in smart grid environments, such as data complexity and computational requirements are taken into account. The findings underscore the critical importance of ongoing research and innovation to ensure the resilience of smart grid cybersecurity.en_US
dc.format.extent5 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542612en_US
dc.subjectmachine learningen_US
dc.subjectartificial intelligenceen_US
dc.subjectcybersecurityen_US
dc.subjectrenewable energyen_US
dc.subjectsmart griden_US
dc.titleA Review on Improvement in Detection of Cyberattacks Using Artificial Intelligence for the Grid Applicationsen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references30en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.institutionCasimir Pulaski University of Radomen_US
dc.contributor.institutionPrivate University of Fez (UPF)en_US
dc.contributor.institutionUniversité Sidi Mohamed Ben Abdellahen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektros inžinerijos katedra / Department of Electrical Engineeringen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542612en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record