Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorIvinskij, Vadimas
dc.contributor.authorMorkvėnaitė-Vilkončienė, Inga
dc.date.accessioned2025-12-31T07:17:06Z
dc.date.available2025-12-31T07:17:06Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159636
dc.description.abstractA scanning electrochemical microscope (SECM) with artificial intelligence could generate the sample's activity image from approach curves measured at several points, minimizing the time of measurement and calculating sample activity in points of interest. The time used to shape the separation between the feature space and regression line in the convolutional process for CNNs and DNNs constitutes a significant contribution to the accuracy of the AI model performance. Kernel functions and pre- processing of synthetic data can achieve higher efficiency and localization precision by applying them to the initial layers of an MLP network; assuming an infinite-width network, we can use the theory from NTK to consider the kernel shape and function. In this paper, we compare model accuracy and performance with and without rescaled data for under-sampled data sets and determine the effectiveness of CNN Fourier kernel interpolation filtering to detect high-frequency features for non-image data in multi-layer perceptron (MLP) networks. The results show how engineered feature mapping and data shaping can affect the convergence of several types of Gaussian and Fourier mapping methods for training and validation convergence with custom activation and modified filter functions, as well as model learning of highly sampled features in proprietary data bands.en_US
dc.format.extent5 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542602en_US
dc.subjectmachine learningen_US
dc.subjectfeature engineeringen_US
dc.subjectMLPen_US
dc.subjectFFT mappingen_US
dc.subjectFFen_US
dc.subjectNTK neural networksen_US
dc.titleKernel Filter-Based Image Construction from Scanning Electrochemical Microscopy Approach Curvesen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references19en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektros inžinerijos katedra / Department of Electrical Engineeringen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.description.fundingorganizationTaipei Tech - Vilnius Techen_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542602en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record