Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorSmelyakov, Kirill
dc.contributor.authorKitsenko, Yuriy
dc.contributor.authorChupryna, Anastasiya
dc.date.accessioned2026-01-02T07:39:42Z
dc.date.available2026-01-02T07:39:42Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159644
dc.description.abstractThe paper is devoted to efficiency evaluation of modern deepfake detection models based on convolutional neural networks (CNN). In the context of rapid development of digital technologies and increasing volume of information on the internet, the relevance of detecting fake images, videos, and textual materials becomes increasingly significant. Fake content, spread through social networks and other platforms, can have serious consequences, ranging from individual malicious attacks to manipulations of public opinion on a global level. We have built and trained several models for detecting fake content using convolutional neural networks. The training was performed using Deepfake Detection Challenge Dataset. During the study, we carried out the comparative analysis of the created models. Obtained results were compared with a number of recent publications.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542582en_US
dc.subjectDeepfakeen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectFace detectionen_US
dc.subjectEficientNeten_US
dc.titleDeepfake Detection Models Based on Machine Learning Technologiesen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references36en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542582en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record