| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Breivė, Valentinas | |
| dc.contributor.author | Sledevic, Tomyslav | |
| dc.date.accessioned | 2026-01-02T08:40:53Z | |
| dc.date.available | 2026-01-02T08:40:53Z | |
| dc.date.issued | 2024 | |
| dc.identifier.isbn | 9798350352429 | en_US |
| dc.identifier.issn | 2831-5634 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159646 | |
| dc.description.abstract | Person detection in thermal imagery is crucial for surveillance and monitoring applications. We assess the performance of YOLOv8 and YOLOv9 models using a new thermal image dataset. Our study reveals that both models achieve high precision, with YOLOv8 showing a superior training time and inference speed compared to YOLOv9. Specifically, YOLOv8 models achieve precision rates of 89% to 90 %, outperforming YOLOv9 with precision ranging from 87% to 88%. Moreover, YOLOv8 models demonstrate faster training times and lower inference processing times, making them more suitable for real-time applications. Despite challenges such as false positives and false negatives, our findings provide valuable insights into improving the accuracy and efficiency of thermal-based person detection, thereby enhancing surveillance and monitoring systems. | en_US |
| dc.format.extent | 4 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159404 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/10542600 | en_US |
| dc.subject | Convolutional neural network | en_US |
| dc.subject | person detection | en_US |
| dc.subject | object tracking | en_US |
| dc.subject | thermal images | en_US |
| dc.title | Person Detection in Thermal Images: A Comparative Analysis of YOLOv8 and YOLOv9 Models | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2024-06-05 | |
| dcterms.references | 8 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
| dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
| dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | en_US |
| dc.contributor.department | Elektroninių sistemų katedra / Department of Electronic Systems | en_US |
| dcterms.sourcetitle | 2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9798350352412 | en_US |
| dc.identifier.eissn | 2690-8506 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream61684.2024.10542600 | en_US |