Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorBreivė, Valentinas
dc.contributor.authorSledevic, Tomyslav
dc.date.accessioned2026-01-02T08:40:53Z
dc.date.available2026-01-02T08:40:53Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159646
dc.description.abstractPerson detection in thermal imagery is crucial for surveillance and monitoring applications. We assess the performance of YOLOv8 and YOLOv9 models using a new thermal image dataset. Our study reveals that both models achieve high precision, with YOLOv8 showing a superior training time and inference speed compared to YOLOv9. Specifically, YOLOv8 models achieve precision rates of 89% to 90 %, outperforming YOLOv9 with precision ranging from 87% to 88%. Moreover, YOLOv8 models demonstrate faster training times and lower inference processing times, making them more suitable for real-time applications. Despite challenges such as false positives and false negatives, our findings provide valuable insights into improving the accuracy and efficiency of thermal-based person detection, thereby enhancing surveillance and monitoring systems.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542600en_US
dc.subjectConvolutional neural networken_US
dc.subjectperson detectionen_US
dc.subjectobject trackingen_US
dc.subjectthermal imagesen_US
dc.titlePerson Detection in Thermal Images: A Comparative Analysis of YOLOv8 and YOLOv9 Modelsen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references8en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542600en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record