Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorShcherban, Yaroslav
dc.contributor.authorKyrylo, Smelyakov
dc.contributor.authorChupryna, Anastasiya
dc.date.accessioned2026-01-05T09:06:18Z
dc.date.available2026-01-05T09:06:18Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159654
dc.description.abstractSarcoidosis, a multifaceted inflammatory disorder, often involves the ′ lungs, presenting challenges in diagnosis and management. Computed tomography (CT) imaging is pivotal in assessing pulmonary sarcoidosis, yet interpretation can be subjective and variable. This study explores the application of artificial intelligence (AI) models, including Convolutional Neural Networks (CNNs), Residual Networks (ResNets), Recurrent Neural Networks (RNNs), and the Ultralytics model, in automating the detection and classification of pulmonary sarcoidosis lesions on CT scans. Additionally, the research provides a detailed comparative analysis of these AI models, elucidating their strengths and limitations in pulmonary sarcoidosis detection.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542583en_US
dc.subjectPulmonary sarcoidosisen_US
dc.subjectartificial intelligenceen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.subjectCNNsen_US
dc.subjectresidual networksen_US
dc.subjectRNNsen_US
dc.subjectUltralytics modelen_US
dc.subjectcomputed tomographyen_US
dc.subjectCT imagingen_US
dc.subjectlesion detectionen_US
dc.subjectclassificationen_US
dc.subjectmedical image analysisen_US
dc.titleAI Models of Pulmonary Sarcoidosis Detectionen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references19en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542583en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record