| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Shcherban, Yaroslav | |
| dc.contributor.author | Kyrylo, Smelyakov | |
| dc.contributor.author | Chupryna, Anastasiya | |
| dc.date.accessioned | 2026-01-05T09:06:18Z | |
| dc.date.available | 2026-01-05T09:06:18Z | |
| dc.date.issued | 2024 | |
| dc.identifier.isbn | 9798350352429 | en_US |
| dc.identifier.issn | 2831-5634 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159654 | |
| dc.description.abstract | Sarcoidosis, a multifaceted inflammatory disorder, often involves the ′ lungs, presenting challenges in diagnosis and management. Computed tomography (CT) imaging is pivotal in assessing pulmonary sarcoidosis, yet interpretation can be subjective and variable. This study explores the application of artificial intelligence (AI) models, including Convolutional Neural Networks (CNNs), Residual Networks (ResNets), Recurrent Neural Networks (RNNs), and the Ultralytics model, in automating the detection and classification of pulmonary sarcoidosis lesions on CT scans. Additionally, the research provides a detailed comparative analysis of these AI models, elucidating their strengths and limitations in pulmonary sarcoidosis detection. | en_US |
| dc.format.extent | 4 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159404 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/10542583 | en_US |
| dc.subject | Pulmonary sarcoidosis | en_US |
| dc.subject | artificial intelligence | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | convolutional neural networks | en_US |
| dc.subject | CNNs | en_US |
| dc.subject | residual networks | en_US |
| dc.subject | RNNs | en_US |
| dc.subject | Ultralytics model | en_US |
| dc.subject | computed tomography | en_US |
| dc.subject | CT imaging | en_US |
| dc.subject | lesion detection | en_US |
| dc.subject | classification | en_US |
| dc.subject | medical image analysis | en_US |
| dc.title | AI Models of Pulmonary Sarcoidosis Detection | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2024-06-05 | |
| dcterms.references | 19 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Kharkiv National University of Radio Electronics | en_US |
| dcterms.sourcetitle | 2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9798350352412 | en_US |
| dc.identifier.eissn | 2690-8506 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream61684.2024.10542583 | en_US |