Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorŽvirblis, Tadas
dc.contributor.authorMatijošius, Jonas
dc.contributor.authorKilikevičius, Artūras
dc.date.accessioned2026-01-05T12:28:52Z
dc.date.available2026-01-05T12:28:52Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159659
dc.description.abstractThis research presents results and discussion on prognostic deep learning models developed for the prediction of emission parameters of internal combustion engines. The resulting models were trained to predict various engine emission parameters from engine vibrations and the type of fuel used. To train and test the models, a dataset was created, where the input data was obtained from the measured engine vibrations at certain moments of time and the type of fuel used. Using obtained input data, the output data were calculated using a prognostic model. 162 models of multilayer perceptron network architecture were created and trained using different combinations of training parameters. The accuracy of each model was measured using the mean absolute percentage error and mean squared error metrics. The paper analyzes the influence of each selected parameter on the accuracy of the model. The best accuracy was achieved by a multilayer perceptron neural network model with 1 hidden layer and 50 neurons, which was trained for 20 epochs with a batch size of 16. The accuracy of the model on the testing dataset was 0.02161 and 0.00014, respectively, based on the mean absolute percentage error and mean squared error metrics.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542607en_US
dc.subjectengine emissionsen_US
dc.subjectmultilayer perceptron networken_US
dc.subjectdeep neural networken_US
dc.subjectdeep learning parametersen_US
dc.titleAn Experimental Selection of Deep Neural Network Hyperparameters for Engine Emission Prognosisen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references27en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilnius Universityen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanicsen_US
dc.contributor.departmentMechanikos mokslo institutas / Institute of Mechanical Scienceen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.description.fundingorganizationResearch Council of Lithuania (LMTLT)en_US
dc.description.grantnumberS-PD-22-81en_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542607en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record