Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorByzkrovnyi, Oleksandr
dc.contributor.authorSmelyakov, Kyrylo
dc.contributor.authorChupryna, Anastasiya
dc.contributor.authorLanovyy, Oleksiy
dc.date.accessioned2026-01-05T12:37:42Z
dc.date.available2026-01-05T12:37:42Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159660
dc.description.abstractThis article is an investigation for the best suited algorithm for object detection on Jetson TX2 NX platform. Previous research aimed at determination of the quickest and the most accurate algorithm for obj ect detection and tracking of vehicles. Current research uses previous article results and tries to apply found models on Jetson TX2 NX platform. The general goal is detection of a person on crosswalk. The model should have higher speed, than better accuracy in this case, because detection speed is a crucial point. This research includes applying of the YOLOv8m with 18 classes, which may appear on the road, YOLOv8s with only person class, DetectNet_v2 with ResNetl0 as a backbone and smaller version of this model. Mentioned models will be compared using trtexec tool on Jetson TX2 NX.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542592en_US
dc.subjectDetectNet_v2en_US
dc.subjectJetson TX2 NXen_US
dc.subjectmachine learningen_US
dc.subjectobject detectionen_US
dc.subjectcrossroad person detectionen_US
dc.subjectYOLOv8en_US
dc.titleComparison of Object Detection Algorithms for the Task of Person Detection on Jetson TX2 NX Platformen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references29en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542592en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record