Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorChaikovskyi, Serhii
dc.contributor.authorSmelyakov, Sergey
dc.date.accessioned2026-01-05T12:48:12Z
dc.date.available2026-01-05T12:48:12Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159661
dc.description.abstractGreenhouse farming plays a crucial role in satisfying the demand throughout the year, regardless of climatic conditions. However, maintaining crop health in greenhouses is critical and challenging. This paper is devoted to analyzing the performance of a hybrid neural network (HNN) based classifier for effective and timely detection of weeds and tomato diseases in greenhouses. Each plant disease has unique features that can be recognized and classified. It is also possible to analyze images of plants in the early stages to detect weeds because weeds are usually significantly different from varietal plants. Thus, we can effectively analyze the condition and type of plants at each stage of cultivation. HNN models can be used to optimize the resource usage for growing a crop unit. It will also allow better monitoring of plant health. In addition, early detection of diseases will significantly reduce the excessive use of agrochemicals.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542614en_US
dc.subjectHybrid Neural Networksen_US
dc.subjectclassifieren_US
dc.subjectweeds detectionen_US
dc.subjecttomato diseasesen_US
dc.titleHybrid Neural Network Classifier for Detecting Weeds and Plant Diseases in Greenhousesen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references23en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542614en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą