Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorMaravillas, Alme B.
dc.date.accessioned2026-01-06T07:57:03Z
dc.date.available2026-01-06T07:57:03Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159665
dc.description.abstractUnderstanding the habitat suitability of the species has been one of the main focus of biodiversity conservation. Species Distribution Modelling (SDM) has great potential to support marine conservation planning. SDM can forecast the optimal conditions for species cultivation, aiding in the prevention of habitat loss and biodiversity degradation. Four habitat suitability models-DNN, MaxEnt, RF, and GBM-were utilized to forecast the distribution of marine bivalves. Also, a stacking ensemble-based estimation model was developed, utilizing the model performance outcomes as input to enhance estimation accuracy. Finally, the habitat suitability results based on the performance evaluation metrics such as the area under the curve (AUC), sensitivity, specificity, the kappa statistic, and the TSS were used to evaluate the predictive performance of the SDMs. The experimentation results indicate that the Ensemble model delivers superior predictive performance as evidenced by its exceptional scores and demonstrated strong predictive capabilities in forecasting the potential habitat of bivalve species. The implemented model achieves impressive AUC values of 0.98, along with Kappa statistics and Specificity scores of 0.96, and Sensitivity and TSS scores of 0.97. These findings underscore the effectiveness of the Ensemble model in accurately predicting bivalve habitat suitability, thus providing valuable insights for marine conservation planning efforts.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542596en_US
dc.subjectBivalvesen_US
dc.subjectdeep neural networken_US
dc.subjectensemble approachen_US
dc.subjectGBMen_US
dc.subjecthabitat suitability modelingen_US
dc.subjectmaximum entropyen_US
dc.subjectrandom foresten_US
dc.titlePredicting Geographic Distribution and Potential Habitat of Marine Bivalves *en_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references32en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionBohol Island State University - Clarin Poblacion Norteen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542596en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą