Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorViodor, Ariel Christian C.
dc.date.accessioned2026-01-06T08:48:05Z
dc.date.available2026-01-06T08:48:05Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159668
dc.description.abstractMangroves, as vital coastal ecosystems, play a significant role in maintaining biodiversity and providing essential ecosystem services. However, difficulties with species identification and biodiversity monitoring impede their conservation. In this work, we provide MangroveLens, a smart solution for biodiversity monitoring and mangrove species identification that makes use of MobileNetV3. We suggest utilizing mobile device images to recognize mangrove species using a deep learning-based method. MobileNetV3, renowned for its accuracy and efficiency, is used because it works well in contexts with limited resources. We exhibit the effectiveness of MangroveLens by conducting extensive experiments on real-world mangrove datasets, demonstrating its capacity to precisely identify different species of mangroves and monitor their biodiversity. Streamline biodiversity monitoring with an easy-to-use interface, real-time data documentation, and a cloud-based setup for viable analysis. Our findings suggest that MangroveLens provides a useful and effective tool for policymakers, academics, and conservationists to monitor and manage mangrove ecosystems, enabling focused conservation efforts and improving our knowledge of these important habitats.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542585en_US
dc.subjectDeep Learning Modelen_US
dc.subjectNeural Network Architectureen_US
dc.subjectMobileNetV3Largeen_US
dc.subjectMangrovesen_US
dc.subjectMobile Applicationen_US
dc.titleMangroveLens: A Smart Solution for Mangrove Species Identification Through MobileNetV3 Network Architecture and Biodiversity Monitoringen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references34en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionBohol Island State University – Clarin Campusen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542585en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą