Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorSirutavičius, Tomas
dc.contributor.authorOsuch, Patryk
dc.contributor.authorByczuk, Bartlomiej
dc.contributor.authorRucki, Mirosław
dc.contributor.authorKilikevičius, Artūras
dc.contributor.authorŽvirblis, Tadas
dc.date.accessioned2026-01-07T06:57:49Z
dc.date.available2026-01-07T06:57:49Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159676
dc.description.abstractThe period between 2010 and 2017 was marked by robust economic growth, which resulted in a notable rise in global energy consumption. Specifically, electricity usage surged by 19.4%, while fossil fuels experienced a 9.1% increase. In this context, the innovation of smart, environmentally-friendly diesel generators, coupled with the implementation of advanced artificial intelligence algorithms for optimizing performance and minimizing emissions, is garnering significant attention within industrial automation sectors. This study introduces the autoformer neural network framework, tailored for predicting solid particle emissions from diesel generators. The prediction model utilized input parameters such as vibration data, acoustic signals, and thermal images of exhaust gases. The generator was tested under varying loads of 0.0 kW, 0.3 kW, 0.6 kW, 1.0 kW, 1.3 kW, 1.6 kW, and 2.0 kW, while measuring exhaust particle sizes of 0.3 μm, 0.5 μm, 1.0 μm, 2.5 μm, 5.0 μm, and 10.0 μm. The autoformer model yielded optimal predictions at a generator load of 1.3 kW, achieving a MAPE of 1.1%, 3.2%, 0.8%, 1.4%, 1%, and 0.9% for particles sizes of 0.3 μm, 0.5 μm, 1.0 μm, 2.5 μm, 5.0 μm, and 10.0 μm, respectively. Although the autoformer model’s accuracy declined under varying load conditions, these findings affirm its potential as an innovative tool for predicting exhaust particle emissions effectively.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.subjectpredictive modelingen_US
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectsolid particlesen_US
dc.subjectemissionsen_US
dc.subjectdiesel generatoren_US
dc.subjectenvironmental impacten_US
dc.titlePredicting Solid Particle Levels in Diesel Generators using an Autoformer Neural Networken_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references10en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilnius Universityen_US
dc.contributor.institutionCasimir Pulaski Radom Universityen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanicsen_US
dc.contributor.departmentMechanikos mokslo institutas / Institute of Mechanical Scienceen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016877en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą