Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorGrigas, Ovidijus
dc.contributor.authorPlonis, Darius
dc.contributor.authorMaskeliūnas, Rytis
dc.date.accessioned2026-01-07T08:46:57Z
dc.date.available2026-01-07T08:46:57Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159679
dc.description.abstractMild Cognitive Impairment (MCI) is a neurode-generative condition characterized by cognitive decline that may progress to Alzheimer’s disease. Modern neuroimaging techniques, particularly Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), serve as essential diagnostic tools by providing detailed structural and metabolic information of the brain tissue. Fluorodeoxyglucose PET (FDG-PET) has emerged as one of the most sensitive early indicators of MCI due to its ability to quantify glucose metabolism in specific regions of the brain. Patients with MCI exhibit characteristic patterns of reduced metabolic activity in distinct brain regions, which can be detected through automated analysis.Recent advances in Artificial Intelligence (AI) and Deep Learning (DL) have revolutionized medical image analysis through their superior pattern recognition capabilities. State-of-the-art (SOTA) image classification methods, including Convolutional Neural Networks (CNN) and Vision Transformers (ViT), demonstrate remarkable precision in distinguishing MCI patients from Cognitively Normal (CN) individuals. This study presents a novel methodology that uses FDG-PET as the primary diagnostic modality, incorporating histogram equalization technique, noise reduction and advanced augmentation pipeline. When combined with SOTA image classifiers, our approach achieves a 7% improvement in diagnostic accuracy over the baseline, highlighting how neuroimaging enhancement techniques can improve the already robust diagnostic capabilities of DL image classifiers.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016880en_US
dc.subjectpositron emission tomographyen_US
dc.subjectmild cognitive impairmenten_US
dc.subjectenhancementen_US
dc.subjectclassificationen_US
dc.subjectdeep learningen_US
dc.titlePET Neuroimaging Enhancements for Improved Mild Cognitive Impairment Detectionen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references33en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKaunas University of Technologyen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016880en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą