Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorHilario, Mark Ryan I.
dc.contributor.authorInferido, Eliezer C.
dc.contributor.authorMelecio, Jhonlie C.
dc.contributor.authorViodor, Ariel Christian C.
dc.date.accessioned2026-01-07T12:22:41Z
dc.date.available2026-01-07T12:22:41Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159683
dc.description.abstractThe Philippine National Police (PNP) in Clarin, Bohol, faces significant challenges in managing personnel and inmate information due to disorganized files, manual processes, and a lack of a centralized system. This inefficiency leads to data redundancy, security risks, and time-consuming retrieval of information. To address issues, the development of a web-based, centralized system, Optimized Personnel and Inmate Tracking Efficiency (OPeraTE), designed to streamline personnel and inmate profiling and improve data security was proposed. The system uses a Siamese Neural Network (SNN) with Triplet Loss to Implement accurate facial recognition, allowing the identification and retrieval of profiles using text and images using K-Fold in training to obtain the hyperparameter values needed to make the model accurate. The SNN architecture consists of three convolutional layers that process input images (anchor, positive, and negative) to generate embeddings, which are then compared to calculate similarity via Squared Euclidean distance. This enables identification with minimal data. OPeraTE includes functionalities like profile creation, editing, search through text and face, and archiving. Performance metrics, including accuracy (78.20%), precision (73.80%), recall (46.88%), F1 Score (57.34%), False Acceptance Rate (FAR) (7.56%), and False Rejection Rate (53.12%), demonstrate the systems efficiency in identifying personnel and inmates. The system was deployed in the PNP-Clarin station, providing a more efficient and secure method of managing personnel and inmate profiles. The results confirm that OPeraTE significantly enhances data management, reduces errors, and contributes to improved law enforcement operations and public safety.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016882en_US
dc.subjectNeural Networken_US
dc.subjectFacial Recognitionen_US
dc.subjectSiamese Neural Networken_US
dc.subjectDeep Learningen_US
dc.subjectProfile Managementen_US
dc.titleOPeraTE.AI: Optimized Personnel and Inmate Tracking Efficiency Through Facial Recognition using Siamese Neural Networken_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references24en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionBohol Island State University – Clarin Campusen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016882en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record