Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorKapustin, Vsevolod
dc.contributor.authorPaulauskas, Nerijus
dc.contributor.authorPaulikas, Šarūnas
dc.date.accessioned2026-01-07T13:41:34Z
dc.date.available2026-01-07T13:41:34Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159685
dc.description.abstractThis paper explores the challenges and opportunities in detecting cyber-attacks within encrypted network traffic. While encryption ensures data privacy and secure communications, it also obscures malicious activities from traditional detection systems, necessitating advanced techniques for threat identification. Artificial intelligence (AI) models are widely applied in cybersecurity, but their effectiveness depends on high-quality training data. This study examines how static parameters and features derived from the X.509 standard in Transport Layer Security (TLS) influence the training performance of machine learning models. Using the HIKARI-2021 encrypted brute-force attack dataset, the research evaluates the significance of TLS and X.509 features compared to conventional IP and TCP header-based attributes. Feature importance is assessed through mutual information (MI) scoring, while model performance is analyzed using accuracy, recall, F1-score, and training time metrics. The results demonstrate that incorporating TLS and X.509 features enhances the detection of encrypted brute-force and slow brute-force attacks compared to traditional transport and IP protocol-based features.en_US
dc.format.extent9 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016861en_US
dc.subjectanomaly detectionen_US
dc.subjectencrypted trafficen_US
dc.subjectfeature ratingen_US
dc.subjectmachine learningen_US
dc.subjectHIKARI-2022 dataseten_US
dc.subjectXGBoosten_US
dc.subjectSVMen_US
dc.subjectKNNen_US
dc.titleFeature Importance analysis for encrypted brute-force attack detection based on machine learning techniquesen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references24en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016861en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record