Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorAriño, Angeline W.
dc.contributor.authorManagaytay, John Jayford P.
dc.contributor.authorBacalso, John Vic C.
dc.contributor.authorRemolado, Alvin T.
dc.date.accessioned2026-01-07T14:22:30Z
dc.date.available2026-01-07T14:22:30Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159688
dc.description.abstractIn academic settings, student feedback plays a crucial role in evaluating events and improving future planning. However, traditional manual feedback processing is time-consuming, error-prone, and inconsistent, often leading to delays in decision-making. To address this, the Senti Guide web application was developed, incorporating sentiment analysis to automatically classify student feedback into positive, neutral, or negative sentiments. The system utilizes Support Vector Machines (SVM) with a Radial Basis Function (RBF) kernel for sentiment classification, ensuring efficient handling of nonlinear relationships in the data. This method allows the system to effectively differentiate between complex patterns in student feedback. Preprocessing steps such as normalization, tokenization, and stop-word removal are applied to clean and structure the feedback data, preparing it for optimal analysis. Furthermore, hyperparameter tuning is employed to optimize the model’s performance, improving its accuracy, precision, recall, and F1 score. The model demonstrates significant performance improvements, achieving high classification accuracy of 90.05%, precision of 90.56%, recall of 90.05%, and F1-score of 90.04%. By automating sentiment analysis, Senti Guide provides the SSG with a scalable solution to modernize evaluation methods and enhance the future quality of school events. This research underscored the significance of employing machine learning to improve feedback processing, offering valuable insights for the Supreme Student Government to enhance event planning and student engagement.en_US
dc.description.sponsorshipBohol Island State University Clarin Campus administrators and the Supreme Student Governmenten_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016894en_US
dc.subjectSentiment Analysisen_US
dc.subjectSupport Vector Machinesen_US
dc.subjectHyperparameter Tuningen_US
dc.titleSenti Guide: A Machine Learning-Based Sentiment Analysis System for Student Feedback Evaluationen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references27en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionBohol Island State University – Clarin Campusen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016894en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record