Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorBilgin, Elif Seray
dc.contributor.authorKilimci, Zeynep Hilal
dc.date.accessioned2026-01-09T07:34:29Z
dc.date.available2026-01-09T07:34:29Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159703
dc.description.abstractFacility management benefits from efficient inventory tracking to optimize resource allocation and control costs. In this study, a deep learning-based method is presented for detecting and quantifying office inventory from office images. The proposed system employs YOLOv9 for object detection; however, since YOLOv9 does not include predefined categories for office supplies, a custom dataset is developed. A total of 10,000 images of common office inventory items are collected through web crawling, and 2,000 images are manually annotated using Roboflow to support model training. The dataset consists of 14 office inventory classes, ensuring comprehensive coverage of essential items. Experimental results demonstrate that the model effectively detects and counts office inventory items, providing a reliable solution for automated inventory management. The proposed approach minimizes manual effort, improves tracking accuracy, and enhances the efficiency of facility management operations.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016884en_US
dc.subjectDeep learningen_US
dc.subjectObject detectionen_US
dc.subjectInventory managementen_US
dc.subjectFacility managementen_US
dc.subjectYOLOen_US
dc.titleDeep Learning-Enabled Inventory Detection for Facility Management Systemen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references12en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKocaeli Universityen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016884en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record