Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorTrofimenko, Oleksii
dc.contributor.authorSmelyakov, Serhii
dc.contributor.authorChupryna, Anastasiya
dc.contributor.authorDudar, Zoia
dc.date.accessioned2026-01-09T10:54:57Z
dc.date.available2026-01-09T10:54:57Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159708
dc.description.abstractLarge language models (LLMs) have made significant progress in processing and generating text across multiple languages. However, translating long literary works remains challenging due to the need for consistent character interactions, specialized vocabulary, and coherence across chapters. This paper explores these difficulties and examines methods to achieve decent-quality LLM-based translation of literary texts. Various approaches are considered, including techniques for improving contextual awareness and integrating domain-specific vocabulary to reduce inconsistencies. The analysis highlights both the strengths and limitations of current methods, suggesting that targeted context management and fine-tuning strategies have the potential to improve translation accuracy in certain cases. These insights contribute to the development of more effective translation systems for literary texts and multilingual content.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016863en_US
dc.subjectLarge Language Modelsen_US
dc.subjecttranslation of literary textsen_US
dc.subjectcontextual awarenessen_US
dc.subjectdomain-specific vocabularyen_US
dc.titleExploring Strategies for Literary Translation Using Large Language Modelsen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references12en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016863en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record