Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorAparece, Harey D.
dc.contributor.authorGambe, Julia Ann A.
dc.contributor.authorPenton, Jay Mark M.
dc.contributor.authorValdez, Daryl B.
dc.date.accessioned2026-01-09T12:24:41Z
dc.date.available2026-01-09T12:24:41Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159712
dc.description.abstractWorkforce management is a critical function in any organization, yet traditional human resource practices and manual attendance tracking are often inefficient, error-prone, and insecure. This study proposes an integrated Human Resource Management System (HRMS) with a face recognition-based attendance tracking system to address these issues. The system was developed using ReactJS for the front end and implemented facial recognition through the YuNet model for face detection, the SFace model for facial feature extraction, and K-Nearest Neighbors (KNN) for classification. The research employed a true experimental design and evaluated the face recognition system using performance metrics such as False Acceptance Rate (FAR) and False Rejection Rate (FRR). Various normalization techniques were tested, with gamma correction yielding the most balanced performance, achieving a low FAR of 7.3% and an FRR of 46.7%. The system demonstrated efficient recognition performance and security, significantly reducing unauthorized access while maintaining reliable attendance logging. These results affirm the system’s potential to enhance HR operations through automation, accuracy, and a user-friendly interface.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016878en_US
dc.subjectHuman Resourceen_US
dc.subjectWorkforce Managementen_US
dc.subjectAttendance Trackingen_US
dc.subjectFace Detectionen_US
dc.subjectFace Recognitionen_US
dc.titleDesign and Development of Integrated Human Resource Management System with Face Recognition Attendanceen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references22en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionBohol Island State University-Clarin Campusen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016878en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record