Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorBoumais, Khaoula
dc.contributor.authorMessaoudi, Fayçal
dc.date.accessioned2026-01-12T12:07:52Z
dc.date.available2026-01-12T12:07:52Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159720
dc.description.abstractAccurate long-term electricity demand forecasting (LTLF) is critical for strategic planning, particularly in the context of escalating climate issues and the intricacies of energy systems. This research proffers a pioneering hybrid deep learning model that integrates Bidirectional Long Short-Term Memory (BiLSTM) networks and Convolutional Neural Networks (CNN), which is optimised using Bayesian Optimisation (BO), with a view to enhancing forecast reliability across diverse energy landscapes. Utilising hourly data from Morocco and Spain in 2017, the model captures significant seasonal, meteorological, and socioeconomic factors that influence power usage. The integration of advanced feature engineering techniques, including lag features and rolling statistical windows, enhances temporal representation, while CNN layers facilitate the extraction of spatial relationships. The model provides reliable 30-day forecasts, validated with MAE, RMSE, and R2 metrics. The model demonstrates higher accuracy in Spain (RMSE: 798.03 kW, R2: 0.9693) and performs well in Morocco (RMSE: 1836.91 kW, R2: 0.9324), thus demonstrating its versatility. This methodology provides a scalable solution for utilities and regulators looking to address long-term demand uncertainties and promote renewable integration.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016829en_US
dc.subjectLong-Term Load Forecastingen_US
dc.subjectBiLSTMen_US
dc.subjectCNNen_US
dc.subjectBayesian Optimizationen_US
dc.subjectElectricity Demanden_US
dc.subjectEnergy Planningen_US
dc.subjectMoroccoen_US
dc.subjectSpainen_US
dc.titleBiLSTM-CNN with Bayesian Optimization for Accurate Long-Term Load Forecasting: Cross-Regional Insights from Morocco and Spainen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references20en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionSidi Mohammed Ben Abdellah Universityen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016829en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record