Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorGiedra, Henrikas
dc.contributor.authorKatkevičius, Andrius
dc.contributor.authorPlonis, Darius
dc.contributor.authorMatuzevičius, Dalius
dc.date.accessioned2026-01-12T12:37:37Z
dc.date.available2026-01-12T12:37:37Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159721
dc.description.abstractEyeglasses style classification is an important task in computer vision with applications in virtual try-on systems, retail, and personalized recommendations. Such systems must operate efficiently in real-time, even under constraints such as limited training data, class imbalance, and variable product imagery. This study explores the effectiveness of contour-based features, specifically Elliptic Fourier Descriptors (EFD), for classifying eyeglass frame styles. EFD coefficients were extracted from three contour perspectives (full frame, half-frame skeletonized, lens boundaries) and combined into a comprehensive feature representation. Classification performance was assessed using various machine learning algorithms evaluated through 5-fold cross-validation on a diverse dataset of frame designs. Nonlinear classifiers, particularly cubic SVM, fine k-NN, and neural networks, achieved superior performance, with validation accuracies exceeding 94%. The findings demonstrate the discriminative capability, robustness, and efficiency of contour-based features, underscoring their potential advantages and practical limitations relative to alternative feature extraction methods.en_US
dc.format.extent5 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016853en_US
dc.subjectvirtual try-onen_US
dc.subjecteyeglasses frameen_US
dc.subjectcontour-based shape descriptorsen_US
dc.subjectelliptic fourier descriptorsen_US
dc.subjectfeature extractionen_US
dc.subjectshape analysisen_US
dc.subjectclassificationen_US
dc.subjectmachine learningen_US
dc.subjectcomputer visionen_US
dc.titleEvaluation of Contour-based Features for Eyeglasses Style Classificationen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references14en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016853en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record