Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorVdoviak, Gabriela
dc.contributor.authorSledevič, Tomyslav
dc.date.accessioned2026-01-12T13:52:44Z
dc.date.available2026-01-12T13:52:44Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159722
dc.description.abstractThis paper investigates the potential of Mobile Video Networks (MoViNet) for real-time human action recognition in the thermal domain. Although MoViNet models have demonstrated strong performance on RGB-based video datasets, their effectiveness on thermal imagery, known for its robustness to low lighting, occlusions, and privacy concerns, remains underexplored. To address this gap, we evaluated three MoViNet variants (A0, A1, A2) using a custom single-person thermal video dataset consisting of three action classes. Due to the limited size of the custom dataset, we apply fine-tuning, GMM-based normalization, and channel replication to adapt thermal inputs. Data augmentation techniques, including brightness adjustments, contrast enhancement, and spatial flips, are used to improve generalization. The findings show that MoViNet A2-stream achieves the highest accuracy (88.33%), with A0 and A1 also showing competitive performance. Real-time visualizations confirm early convergence and high confidence throughout each clip. These findings demonstrate that MoViNet models can be effectively fine-tuned for thermal action recognition with minimal modifications, offering promising potential for real-time deployment in resource-constrained or low-visibility environments.en_US
dc.format.extent5 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016871en_US
dc.subjectmovineten_US
dc.subjectaction recognitionen_US
dc.subjectdeep learningen_US
dc.subjectthermal imagingen_US
dc.subjectresource-constrained devicesen_US
dc.subjectstreaming modelsen_US
dc.titleEvaluation of MoViNet Streaming Models for Real-Time Action Recognition in Thermal Domainen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references18en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016871en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record