Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorBarta, Dalibor
dc.contributor.authorPavelcik, Vladimir
dc.contributor.authorBrezani, Milos
dc.date.accessioned2026-01-30T12:11:07Z
dc.date.available2026-01-30T12:11:07Z
dc.date.issued2022
dc.identifier.isbn9783030947736en_US
dc.identifier.issn2523-3440en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159847
dc.description.abstractThe growing number of vehicles is related to the overall growth in the consumption of fuel from fossil fuels or electricity, so new ways are being sought to increase the efficiency of propulsion or the recovery of energy from driving. This article deals with the possibility of recovering kinetic energy from the movement of vehicles, specifically from the air flowing around a passing car. The subject of measurements and simulations were parameters influencing the amount of recovered energy such as the location of the wind turbine near the road, its distance from the side of the moving vehicle, turbine height from the road, speed and size of the vehicle front (car, bus, truck). The measured values were compared with the values from the simulations performed in the program Fluent, and it was shown that in passenger cars the highest air flow is 0.5–1 m above the road and the closest possible to vehicles. With regard to feasibility, the smallest distance was considered to be 0.5 m from the side of the vehicle. Measurements in real traffic showed delay of the air flow behind the vehicle by 1.5–3 s depending on the size of the vehicle and the need for sufficient traffic density. The high intensity of vehicles in urban and suburban areas predestines them to deploy this system. Conversely, in rail transport, given the low frequency of vehicles, the use of this system is unjustified.en_US
dc.description.sponsorshipScientific Grant Agency of the Ministry of Education of the Slovak Republicen_US
dc.description.sponsorshipSlovak Academy of Sciencesen_US
dc.description.sponsorshipOperational Program Integrated Infrastructure 2014 – 2020en_US
dc.format.extent3-15 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159375en_US
dc.source.urihttps://link.springer.com/chapter/10.1007/978-3-030-94774-3_1en_US
dc.subjectVehicleen_US
dc.subjectAirflowen_US
dc.subjectEnergy recuperationen_US
dc.subjectVehicle distanceen_US
dc.titleStudy of Air Flow Around a Moving Vehicle as a Source of Energyen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2022-01-24
dcterms.references26en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionUniversity of Žilinaen_US
dcterms.sourcetitleProceedings of the International Conference TRANSBALTICA XII: Transportation Science and Technology. September 16-17, 2021, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9783030947743en_US
dc.identifier.eissn2523-3459en_US
dc.publisher.nameSpringeren_US
dc.publisher.countrySwitzerlanden_US
dc.publisher.cityChamen_US
dc.description.fundingorganizationEuropean Regional Development Funden_US
dc.description.grantnameDevelopment of advanced virtual models for studying and investigation of transport means operation characteristicsen_US
dc.description.grantnameInnovative Solutions for Propulsion, Power and Safety Components of Transport Vehiclesen_US
dc.description.grantnumberKEGA 023ŽU-4/2020en_US
dc.description.grantnumberITMS 313011V334en_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-94774-3_1en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą