Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorMacutkevičius, Andrius
dc.contributor.authorJunevičius, Raimundas
dc.date.accessioned2026-02-04T09:05:24Z
dc.date.available2026-02-04T09:05:24Z
dc.date.issued2022
dc.identifier.isbn9783030947736en_US
dc.identifier.issn2523-3440en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159869
dc.description.abstractEvery vehicle has different driveline structure and different components; therefore, we must be mindful choosing one. In the early designing stages, deciding which structure and which component with specific requirements fits is not always that obvious as each engineer has its own experience and understanding about product it working with. Therefore, it is worthy to have an instrument, which can evaluate as many perspectives as possible of each drive and offer a solution to the decision-making task. The aim is to review possibilities using artificial intelligence in component selection, based on existing examples of the artificial intelligence uses. All processes in power drives are sufficiently, precisely and widely described, for this reason mathematical model creation is not the biggest challenge. Using design of experiment methods, mathematical model can be used as a data source for artificial intelligence (AI) training. Various structures of neuron network (NN) are used to reach higher accuracy of AI data processing. Many researches concentrate on particular component characteristics choice, but in a case of drive selection it's a complex combination of all drive components, so the possibilities of using AI (artificial intelligence) in solving interdisciplinary tasks are noted.en_US
dc.format.extent202-211 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159375en_US
dc.source.urihttps://link.springer.com/chapter/10.1007/978-3-030-94774-3_20en_US
dc.subjectDecision support systemen_US
dc.subjectArtificial intelligenceen_US
dc.subjectEngineering designen_US
dc.titleConcept Idea of Engineer’s Decision Support Systemen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2022-01-24
dcterms.references12en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyTransporto inžinerijos fakultetas / Faculty of Transport Engineeringen_US
dc.contributor.departmentMobiliųjų mašinų ir geležinkelių transporto katedra / Department of Mobile Machinery and Railway Transporten_US
dcterms.sourcetitleProceedings of the International Conference TRANSBALTICA XII: Transportation Science and Technology. September 16-17, 2021, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9783030947743en_US
dc.identifier.eissn2523-3459en_US
dc.publisher.nameSpringeren_US
dc.publisher.countrySwitzerlanden_US
dc.publisher.cityChamen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-94774-3_20en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record