Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorJackson, Ilya
dc.date.accessioned2026-02-09T08:41:23Z
dc.date.available2026-02-09T08:41:23Z
dc.date.issued2022
dc.identifier.isbn9783030947736en_US
dc.identifier.issn2523-3440en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159903
dc.description.abstractSynchronized supply chains can mitigate a cascading rise-and-fall inventory dynamic and prevent cycles of over and under-production. This paper demonstrated that a deep reinforcement learning agent could only perform adaptive coordination along the whole supply chain if end-to-end information transparency is ensured. Operational and strategic disruptions caused by the COVID-19 pandemic and the post-pandemic recovery can become a necessary kick-starter for required changes in information transparency and global coordination. This paper explores the capabilities of deep reinforcement learning agents to synchronize commodity flows and support operational continuity in the stochastic and nonstationary environment if end-to-end visibility is provided. The paper concludes that the proposed solution can perform adaptive control in complex systems and have potential in supply chain management and logistics. Among discovered benefits, it is essential to highlight that the proximal policy optimization is universal, task unspecific, and does not require prior knowledge about the system.en_US
dc.format.extent490-498 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159375en_US
dc.source.urihttps://link.springer.com/chapter/10.1007/978-3-030-94774-3_48en_US
dc.subjectSupply chainen_US
dc.subjectReinforcement learningen_US
dc.subjectDeep RLen_US
dc.subjectPPOen_US
dc.titleSupply Chain Synchronization Through Deep Reinforcement Learningen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2022-01-24
dcterms.references23en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionCenter for Transportation and Logisticsen_US
dc.contributor.institutionMassachusetts Institute of Technologyen_US
dcterms.sourcetitleProceedings of the International Conference TRANSBALTICA XII: Transportation Science and Technology. September 16-17, 2021, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9783030947743en_US
dc.identifier.eissn2523-3459en_US
dc.publisher.nameSpringeren_US
dc.publisher.countrySwitzerlanden_US
dc.publisher.cityChamen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-94774-3_48en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record