Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorYeremenko, Bohdan
dc.contributor.authorMazurenko, Roman
dc.contributor.authorStetsyk, Oleksii
dc.contributor.authorBuhrov, Anatolii
dc.date.accessioned2026-02-12T13:39:06Z
dc.date.available2026-02-12T13:39:06Z
dc.date.issued2023
dc.identifier.isbn9783031258626en_US
dc.identifier.issn2523-3440en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159937
dc.description.abstractThe study is devoted to solving the problem of traffic jams that arise on the roads of large cities due to various random factors. An overview of the modern systems of automatic control of traffic flows is provided, and the main reasons for the occurrence of traffic anomalies at intersections controlled by traffic lights are considered. The formalisation of input and output data corresponding to stochastic traffic conditions is shown. The research focuses on improving the city’s traffic flow management systems by implementing distributed data processing systems. The architecture of the Distributed Data Processing System is proposed, and the scheme of its integration with the Intellectual Traffic Light Control System, which is being developed for automatic situational adjustment of traffic light operation, is shown. The practical significance of such integration lies in the ability to operate with up-to-date information about the situation on the city’s roads, which is necessary for the automatic coordination of the city’s traffic lights. This possibility can be realised thanks to the ability of distributed data processing systems to process large volumes of stochastic information in real time. In the future, the accumulation of statistical data on the state of traffic will provide an opportunity to form reliable samples for training artificial neural networks capable of processing data from video surveillance cameras.en_US
dc.format.extent33-42 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159378en_US
dc.source.urihttps://link.springer.com/chapter/10.1007/978-3-031-25863-3_4en_US
dc.subjectData processing systemen_US
dc.subjectDistributed systemen_US
dc.subjectRandom processen_US
dc.subjectTraffic lighten_US
dc.subjectUrban logisticsen_US
dc.titleIntelligent Management of Traffic Flows in Large Citiesen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2023-02-22
dcterms.references12en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionTaras Shevchenko National University of Kyiven_US
dc.contributor.institutionKyiv National University of Construction and Architectureen_US
dcterms.sourcetitleProceedings of the International Conference TRANSBALTICA XIII: Transportation Science and Technology. September 15-16, 2022, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9783031258633en_US
dc.identifier.eissn2523-3459en_US
dc.publisher.nameSpringeren_US
dc.publisher.countrySwitzerlanden_US
dc.publisher.cityChamen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-031-25863-3_4en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą