dc.contributor.author | García, Fernando | |
dc.contributor.author | Guijarro, Francisco | |
dc.contributor.author | Oliver, Javier | |
dc.date.accessioned | 2024-06-20T09:33:11Z | |
dc.date.available | 2024-06-20T09:33:11Z | |
dc.date.issued | 2014 | |
dc.identifier.isbn | 9786094576508 | en_US |
dc.identifier.issn | 2029-4441 | en_US |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/154514 | |
dc.description.abstract | The analysis of conditional volatility is a key factor to correctly assess the risk of several financial
assets such as shares, bonds or index as well as derivatives (futures and options). The econometric
models from the GARCH family are traditionally the most widely used to predict conditional volatility.
As an alternative to the econometric models, neural networks can be employed to this end. This paper
compares the econometric model ARMA-EGARCH with the neuronal network Backpropagation. Both
methodologies have been applied on diverse international stock indices. The main conclusion to be
stressed is that the neuronal network can significantly better predict conditional volatility than the econometric
model. | en_US |
dc.format.extent | 7 p. | en_US |
dc.format.medium | Tekstas / Text | en_US |
dc.language.iso | en | en_US |
dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/154365 | en_US |
dc.source.uri | http://old.konferencijos.vgtu.lt/bm.vgtu.lt/public_html/index.php/bm/bm_2014/paper/view/466 | en_US |
dc.subject | Conditional volatility | en_US |
dc.subject | GARCH | en_US |
dc.subject | Backpropagation neuronal network | en_US |
dc.subject | stock index | en_US |
dc.subject | prediction | en_US |
dc.title | Modelling conditional volatility in stock indices: a comparison of the arma-egarch model versus neuronal network backpropagation | en_US |
dc.type | Konferencijos publikacija / Conference paper | en_US |
dcterms.accessRights | Laisvai prieinamas / Openly available | en_US |
dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
dcterms.alternative | Finance engineering | en_US |
dcterms.issued | 2014-05-16 | |
dcterms.references | 31 | en_US |
dc.description.version | Taip / Yes | en_US |
dc.contributor.institution | Universidad Politécnica de Valencia | en_US |
dcterms.sourcetitle | 8th International Scientific Conference “Business and Management 2014” | en_US |
dc.identifier.eisbn | 9786094576492 | en_US |
dc.identifier.eissn | 2029-929X | en_US |
dc.publisher.name | Vilnius Gediminas Technical University | en_US |
dc.publisher.name | Vilniaus Gedimino technikos universitetas | en_US |
dc.publisher.country | Lithuania | en_US |
dc.publisher.country | Lietuva | en_US |
dc.publisher.city | Vilnius | en_US |
dc.identifier.doi | http://dx.doi.org/10.3846/bm.2014.026 | en_US |