• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2018 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2018 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of cell colonies images by ART2 classifier

Thumbnail
Date
2018
Author
Skirelis, Julius
Navakauskas, Dalius
Metadata
Show full item record
Abstract
Counting of cell colonies is a high demanded procedure in cytometry. An ability to automatically parameterize biomedical samples highly influences on cytometry and therefore medical research results. The article extends previously by the authors developed cell colonies image parameterization technique with new results based on the use of another - ART2 (Adaptive Resonance Theory 2), classifier. Experimental investigation is carried out in order to check reliability of cell colony count and efficiency of cell colony image classification. Results of the experimental verification confirms that ART2 classifier brings up similar results to Heuristic classifier in terms of F1 score, accuracy and precision, yet DOR value is increased more than two times. Moreover the use of ART2 classifier in terms of true positives manifests better performance than the use of other considered classifiers: Support Vector Machine - by 14%, ART1 - by 4% and Heuristic - by 2%.
Issue date (year)
2018
Author
Skirelis, Julius
URI
https://etalpykla.vilniustech.lt/handle/123456789/159498
Collections
  • 2018 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [13]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister