• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2019 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2019 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Text Classification using Different Feature Extraction Approaches

Thumbnail
Date
2019
Author
Dzisevič, Robert
Šešok, Dmitrij
Metadata
Show full item record
Abstract
In this paper, we examine the results of applying three different text feature extraction approaches while classifying short sentences and phrases into categories with a neural network in order to find out which method is best at capturing text features and allows the classifier to achieve highest accuracy. The examined feature extraction methods include a plain Term Frequency Inverse Document Frequency (TF-IDF) approach and its two modifications by applying different dimensionality reduction techniques: Latent Semantic Analysis (LSA) and Linear Discriminant Analysis (LDA). The results show that the TF-IDF feature extraction approach outperforms other methods allowing the classifier to achieve highest accuracy when working with larger datasets. Furthermore, the results show that the TF-IDF in combination with LSA approach allows the classifier to achieve similar accuracy while working with smaller datasets.
Issue date (year)
2019
Author
Dzisevič, Robert
URI
https://etalpykla.vilniustech.lt/handle/123456789/159518
Collections
  • 2019 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [25]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister