| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Dzisevič, Robert | |
| dc.contributor.author | Šešok, Dmitrij | |
| dc.date.accessioned | 2025-12-11T10:47:59Z | |
| dc.date.available | 2025-12-11T10:47:59Z | |
| dc.date.issued | 2019 | |
| dc.identifier.isbn | 9781728125008 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159518 | |
| dc.description.abstract | In this paper, we examine the results of applying three different text feature extraction approaches while classifying short sentences and phrases into categories with a neural network in order to find out which method is best at capturing text features and allows the classifier to achieve highest accuracy. The examined feature extraction methods include a plain Term Frequency Inverse Document Frequency (TF-IDF) approach and its two modifications by applying different dimensionality reduction techniques: Latent Semantic Analysis (LSA) and Linear Discriminant Analysis (LDA). The results show that the TF-IDF feature extraction approach outperforms other methods allowing the classifier to achieve highest accuracy when working with larger datasets. Furthermore, the results show that the TF-IDF in combination with LSA approach allows the classifier to achieve similar accuracy while working with smaller datasets. | en_US |
| dc.format.extent | 4 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159393 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/8732167 | en_US |
| dc.subject | text classification | en_US |
| dc.subject | neural network | en_US |
| dc.subject | feature extraction | en_US |
| dc.subject | term frequency inverse document frequency | en_US |
| dc.subject | latent semantic analysis | en_US |
| dc.subject | linear discriminant analysis | en_US |
| dc.title | Text Classification using Different Feature Extraction Approaches | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2019-06-06 | |
| dcterms.references | 21 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
| dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
| dc.contributor.department | Informacinių technologijų katedra / Department of Information Technologies | en_US |
| dcterms.sourcetitle | 2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2019, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9781728124995 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream.2019.8732167 | en_US |