Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorDzisevič, Robert
dc.contributor.authorŠešok, Dmitrij
dc.date.accessioned2025-12-11T10:47:59Z
dc.date.available2025-12-11T10:47:59Z
dc.date.issued2019
dc.identifier.isbn9781728125008en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159518
dc.description.abstractIn this paper, we examine the results of applying three different text feature extraction approaches while classifying short sentences and phrases into categories with a neural network in order to find out which method is best at capturing text features and allows the classifier to achieve highest accuracy. The examined feature extraction methods include a plain Term Frequency Inverse Document Frequency (TF-IDF) approach and its two modifications by applying different dimensionality reduction techniques: Latent Semantic Analysis (LSA) and Linear Discriminant Analysis (LDA). The results show that the TF-IDF feature extraction approach outperforms other methods allowing the classifier to achieve highest accuracy when working with larger datasets. Furthermore, the results show that the TF-IDF in combination with LSA approach allows the classifier to achieve similar accuracy while working with smaller datasets.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159393en_US
dc.source.urihttps://ieeexplore.ieee.org/document/8732167en_US
dc.subjecttext classificationen_US
dc.subjectneural networken_US
dc.subjectfeature extractionen_US
dc.subjectterm frequency inverse document frequencyen_US
dc.subjectlatent semantic analysisen_US
dc.subjectlinear discriminant analysisen_US
dc.titleText Classification using Different Feature Extraction Approachesen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2019-06-06
dcterms.references21en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.departmentInformacinių technologijų katedra / Department of Information Technologiesen_US
dcterms.sourcetitle2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2019, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9781728124995en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream.2019.8732167en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record