• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2020 International Conference "Electrical, Electronic and Information Sciences“ (eStream) 
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2020 International Conference "Electrical, Electronic and Information Sciences“ (eStream) 
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implementation of Machine Learning Method for Positioning Accuracy Improvement in Industrial Robot

Thumbnail
Date
2020
Author
Šumanas, Marius
Petronis, Algirdas
Bučinskas, Vytautas
Macerauskas, Eugenijus
Morkvėnaitė-Vilkončienė, Inga
Dzedzickis, Andrius
Metadata
Show full item record
Abstract
Implementing of modern artificial intellect (AI) and machine learning (ML) for existing machinery can add value to their existing capabilities and technical characteristics. Machine learning is next step towards new innovations and stronger competitions in the market. Implementation of (ML) in the area of robotics requires some analysis of existing methods in order of correct of implemented method. This article sums up machine learning methods used in industry and presents successful implementation of deep Q-learning algorithm, implemented in robot static accuracy improvement using variable carrying load. Improvement reaches 0.07 mm for initial value equal to 0.1 mm. Finally, conclusions on implementing ML methods are drawn.
Issue date (year)
2020
Author
Šumanas, Marius
URI
https://etalpykla.vilniustech.lt/handle/123456789/159535
Collections
  • 2020 International Conference "Electrical, Electronic and Information Sciences“ (eStream)  [12]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister