Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorKavaliauskas, Matas
dc.contributor.authorSledevič, Tomyslav
dc.date.accessioned2026-01-02T09:39:48Z
dc.date.available2026-01-02T09:39:48Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159648
dc.description.abstractThe paper explores the automated identification of tomato leaf diseases using YOLOv8 detection models on both GPU and Raspberry Pi hardware. Through convolutional neural networks (CNNs) and transfer learning techniques, the study analyzes a dataset comprising images across 10 disease classes. Results demonstrate 0.78-0.79 precision and 0.75-0.81 recall scores for the YOLOv8 models. The Nano model processes single inference on Raspberry Pi in 0.7 second, making it suitable for real-time applications. Through experimental validation, the research underscores the practical significance of deep learning methods in agricultural practices, particularly in greenhouse monitoring and crop management, contributing to early disease detection and ensuring food security.en_US
dc.format.extent3 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542533en_US
dc.subjectConvolutional neural networken_US
dc.subjectobject detectionen_US
dc.subjecttomato leaf diseaseen_US
dc.titleIdentification of Tomato Leaf Disease using YOLOv8 Detection Models on GPU and Raspberry Pien_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references9en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542533en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record