• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of Tomato Leaf Disease using YOLOv8 Detection Models on GPU and Raspberry Pi

Thumbnail
Date
2024
Author
Kavaliauskas, Matas
Sledevič, Tomyslav
Metadata
Show full item record
Abstract
The paper explores the automated identification of tomato leaf diseases using YOLOv8 detection models on both GPU and Raspberry Pi hardware. Through convolutional neural networks (CNNs) and transfer learning techniques, the study analyzes a dataset comprising images across 10 disease classes. Results demonstrate 0.78-0.79 precision and 0.75-0.81 recall scores for the YOLOv8 models. The Nano model processes single inference on Raspberry Pi in 0.7 second, making it suitable for real-time applications. Through experimental validation, the research underscores the practical significance of deep learning methods in agricultural practices, particularly in greenhouse monitoring and crop management, contributing to early disease detection and ensuring food security.
Issue date (year)
2024
Author
Kavaliauskas, Matas
URI
https://etalpykla.vilniustech.lt/handle/123456789/159648
Collections
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [41]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister